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Abstract.
Background: There is intense interest in the development of blood-based biomarkers, not only that can differentiate
Alzheimer’s disease (AD) from controls, but that can also predict conversion from mild cognitive impairment (MCI) to AD.
Serum biomarkers carry the potential advantage over imaging or spinal fluid markers both in terms of cost and invasiveness.
Objective: Our objective was to measure the potential for serum lipid markers to differentiate AD from age-matched healthy
controls as well as to predict conversion from MCI to AD.
Methods: Using a publicly-available dataset, we examined the relationship between baseline serum levels of 349 known
lipids from 16 classes of lipids to differentiate disease state as well as to predict the conversion from MCI to AD.
Results: We observed that several classes of lipids (cholesteroyl ester, phosphatidylethanolamine, lysophos-
phatidylethanolamine, and acylcarnitine) differentiated AD from normal controls. Among these, only two classes,
phosphatidylethanolamine (PE) and lysophosphatidylethanolamine (lyso-PE), predicted time to conversion from MCI to
AD. Low levels of PE and high levels of lyso-PE result in two-fold faster median time to progression from MCI to AD, with
hazard ratios 0.62 and 1.34, respectively.
Conclusion: These data suggest that serum PE and lyso-PE may be useful biomarkers for predicting MCI to AD conversion.
In addition, since PE is converted to lyso-PE by phospholipase A2, an important inflammatory mediator that is dysregulated
in AD, these data suggest that the disrupted serum lipid profile here may be related to an abnormal inflammatory response
early in the AD pathologic cascade.
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INTRODUCTION

Alzheimer’s disease (AD) is an aging-related ill-
ness that manifests as widespread synaptic loss and
cognitive decline. Pathological hallmarks of the ill-
ness are the deposition of extracellular beta-amyloid
peptide, known as amyloid plaques, and intracellular
hyperphosphorylated tau, known as tangles. There
are currently no disease-modifying treatments for
AD, though many are in development and are likely
to be most effective in the earliest stages of the ill-
ness. Therefore, it is imperative that early indicators
of AD be widely available to predict which at-risk
individuals are most likely to decline and therefore
benefit from disease-modifying therapy.

The most well-characterized pre-AD clinical state
is mild cognitive impairment (MCI). MCI patients
have cognitive, but not functional, decline, and bear
many of the pathological hallmarks of AD [1–3].
Therefore, it is likely that biological signatures of
AD found in MCI patients would enhance prediction
of which individuals are likely to develop AD and to
predict the rapidity of progression. In addition, iden-
tifying individuals with a greater speed of cognitive
decline and selecting them for entry into clinical tri-
als may shorten trial duration. Currently, many bio-
markers exist that enhance the prediction of the like-
lihood and rate of MCI to AD conversion [4–6],
though most of these involve either expensive (MRI
or PET imaging) or invasive (cerebrospinal fluid
[CSF]) modalities that limit their widespread use.

Therefore, there has been substantial effort over
the years to develop blood-based biomarkers, which
carry the advantages of being less expensive and
less invasive, and thus more widely available, to
both diagnose AD and predict MCI to AD conver-
sion. For example, efforts have established particular
species of plasma phosphorylated tau that may be
useful for diagnostic and predictive purposes [7,
8]. However, additional recent work has expanded
outside of the traditional amyloid-�/tau axis to
examine the potential for other biomarkers to pre-
dict MCI to AD conversion. For example, serum
lipid classes co-segregate with AD diagnostic cate-
gory [9]. These findings are consistent with a long
history of studies showing metabolic changes in
the AD brain. For example, the lipid composition
of the brain, particularly that of phosphatidyletha-
nolamine (PE) has been found to be markedly altered
in AD. PE is a glycerophospholipid and major com-
ponent of the membrane lipid bilayer (approximately
20% of the lipid content in biological membranes

is PE) as well as the inner mitochondrial mem-
brane [10]. PEs play many important roles in the
cell, including modulation of membrane fusion,
autophagy, and mitochondrial function. Mice engi-
neered to not produce PE are not viable [11],
supporting the vital role of PE in development. A
number of autopsy studies have found that PE levels
are diminished in the AD brain [12–17]. PE levels
are also depressed in the MCI brain [18]. Treatment
with PE has been shown to reverse amyloid-� related
cognitive deficits in a rat model of AD [19]. Recent
data has also shown declines in blood-levels of PE in
AD subjects [20, 21].

Therefore, in the current study, we examine the abi-
lity for serum levels of PE as well as other lipid classes
to predict the progression of MCI to AD. We exam-
ined measured levels of 349 lipids in 16 classes in a
publicly-available database in normal, MCI, and AD
subjects. We found that four classes of lipids signi-
ficantly differentiated AD and control subjects, inclu-
ding PE and lyso-PE, which is a PE metabolite. We
then examined the ability of serum levels of those
four classes of lipids to predict time to conversion
from MCI to AD in MCI subjects that were followed
for at least 36 months. We found that only two: PE
(low levels) and lyso-PE (high levels), significantly
predicted a more rapid rate of conversion. These data
suggest that serum PE and lyso-PE levels may be
additional markers for the prediction of MCI to AD
conversion. In addition, given the role of inflamma-
tory mediators in the conversion of PE to lyso-PE,
these data suggest that serum markers of inflamma-
tion may be elevated very early in the AD pathologic
process.

METHODS

Database

Data used in the preparation of this article were
obtained from the Alzheimer’s Disease Neuroima-
ging Initiative (ADNI) database (http://adni.loni.usc.
edu). The ADNI was launched in 2003 as a public-
private partnership, led by Principal Investigator Mic-
hael W. Weiner, MD. The primary goal of ADNI has
been to test whether serial magnetic resonance imag-
ing (MRI), positron emission tomography (PET),
other biological markers, and clinical and neuropsy-
chological assessment can be combined to measure
the progression of MCI and early AD. For up-to-
date information, see www.adni-info.org. This study
was registered under clinicaltrials.gov under Clin-

http://adni.loni.usc.edu
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icalTrials.gov Identifier: NCT00106899. The study
was conducted across multiple clinical sites and was
approved by the Institutional Review Boards of all of
the participating institutions. Informed written con-
sent was obtained from all participants at each site.
The following individual ethics boards approved the
study: Albany Medical College Institutional Review
Board, Boston University Medical Campus Instituti-
onal Review Board (BU IRB), Butler Hospital Institu-
tional Review Board, Cleveland Clinic Institutional
Review Board, Columbia University Institutional
Review Board, Dartmouth-Hitchcock Medical Cen-
ter Committee for the Protection of Human Subjects,
Duke University Health System Institutional Review
Board, Emory University Institutional Review Board
Georgetown University Institutional Review Board,
Human Investigation Committee Yale University Sc-
hool of Medicine, Human Subjects Committee, Uni-
versity of Kansas Medical Center, Indiana University
Institutional Review Board, Research Compliance
Administration, Institutional Review Board of Bay-
lor College of Medicine, Institutional Review Board
of the Mount Sinai School of Medicine, Johns Hop-
kins University School of Medicine Institutional
Review Boards, Lifespan—Rhode Island Hospital
Institutional Review Board, Mayo Clinic Institutional
Review Board, Nathan Kline Institute Rockland Psy-
chiatric Center Institutional Review Board (NKI RPC
IRB), New York University Langone Medical Cen-
ter School of Medicine, Institutional Review Board
Human Research Program, Northwestern University
Institutional Review Board Office, Office of the Was-
hington University School of Medicine IRB (OWU
MC IRB), Oregon Health and Science University
Institutional Review Board, Partners Human Res-
earch Committee, Research Ethics Board Jewish
General Hospital, Research Ethics Board Sunny-
brook Health Sciences Centre, Roper St. Francis Ins-
titutional Review Board, Rush University Medical
Center Institutional Review Board, Stanford Uni-
versity, Administrative Panel on Human Subjects in
Medical Research, The Ohio State University Inst-
itutional Review Board, The University of Texas
Southwestern Medical Center Institutional Review
Board, UCLA Office of the Human Research Pro-
tection Program Institutional Review Board, UCSD
Human Research Protections Program, University
Hospitals Case Medical Center Institutional Review
Board, University of Alabama at Birmingham Institu-
tional Review Board, University of British Columbia,
Clinical Research Ethics Board (CREB), University
of California Davis Office of Research IRB Adminis-

tration, University of California Irvine Office Of Res-
earch Institutional Review Board (IRB), Univer-
sity of California San Francisco Committee on
Human Research (CHR), University of Iowa Institu-
tional Review Board, University of Kentucky Office
of Research Integrity, University of Michigan Medi-
cal School Institutional Review Board (IRBMED),
University of Pennsylvania Institutional Review
Board, University of Pittsburgh Institutional Review
Board, University of Rochester Research Subjects
Review Board (RSRB), University of South Florida
Division of Research Integrity & Compliance, Uni-
versity of Southern California Health Science Cam-
pus Institutional Review Board, University of West-
ern Ontario Research Ethics Board for Health Sci-
ences Research Involving Human Subjects (HSREB),
University of Wisconsin Health Sciences Institutional
Review Board, Wake Forest University Institutional
Review Board, Weill Cornell Medical College Insti-
tutional Review Board, Western Institutional Review
Board and Western University Health Sciences
Research Ethics Board. Data used for the analyses
presented here were accessed on June 25, 2020.

Clinical diagnosis

AD was diagnosed using NINCDS/ADRDA crite-
ria for probable AD [22]. MCI patients had a memory
complaint, an abnormal score on the Logical Mem-
ory II subscale from the Wechsler Memory Scale, an
MMSE score between 24–30 and a Clinical Demen-
tia Rating scale score of 0.5. Normal subjects (NL)
did not have a memory complaint, had a normal score
on the Logical Memory II subscale and had a Clinical
Dementia Rating scale score of zero.

Lipid analysis

Details of lipid extraction and measurement as well
as quality control measures have been previously
described [23] and summarized [24]. In brief, fasting
serum samples were obtained from subjects during
the baseline visit. Lipids were extracted using organic
solvents. Serum extracts were then analyzed using
liquid chromatography with mass spectrometry. After
quality control measures, data were available from a
total of 349 known lipids from 16 classes (see Table 1
for a listing of lipid classes). The lipid subclasses in
the ADNI serum lipidomics data set used in this study
include acylcarnitine, fatty acid, cholesteryl ester, lys-
ophosphatidylcholine, lysophosphatidylethanolami-
ne, phosphatidylcholine, phosphatidylethanolamine,
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Table 1
Listing of lipid classes in the current study

Lipid Classes Lipid Count

Acylcarnitine 9
Ceramide 19
Cholesterol 1
Cholesteroyl ester 8
Diacylglycerol 13
Fatty acid 29
Glactoylceramide 1
Glucosylceramide 6
Lactosylceramide 1
Lysophosphatidylcholine 22
Lysophosphatidylethanolamine 4
Phosphatidylcholine 82
Phosphatidylethanolamine 25
Phosphatidylinositol 11
Sphingomyelin 34
Triacylglycerol 84

Table 2
Demographic variables

NL AD

Number of subjects 226 185
Gender (n) F 108 90

M 118 95
Age in years (Mean ± SD) 75.8 (5.0) 75.3 (7.4)
BMI in kg/m2 (Mean ± SD)∗ 26.7 (4.3) 25.5 (3.9)
ADAS13 (Mean ± SD)∗ 9.5 (4.2) 29.0 (7.7)

Stable MCI to AD
MCI converters

Number of subjects 102 196
Gender (n) F 32 73

M 70 123
Age in years (Mean ± SD) 74.7 (7.8) 74.6 (7.2)
BMI in kg/m2 (Mean ± SD) 26.5 (3.5) 25.8 (4.1)
ADAS13 (Mean ± SD)∗ 14.8 (5.3) 20.8 (5.8)
∗p < 0.05.

phosphatidylinositol, plasmalogen phosphatidyl-
choline, plasmalogen phosphatidylethanolamine,
ceramide, glucosylceramide, sphingomyelin, diacy-
lglycerol, and triacylglycerol.

Statistical methods

The effect of each of the 16 known lipid classes for
differentiating AD and age-matched healthy control
subjects was assessed via “lipid set analysis” (LSA).
This LSA analysis of the lipid classes was based
on the maxmean statistic of the gene-set-analysis
algorithm [25], which was applied on the residuals
from the analysis of covariance (ANCOVA) model
on the 349 individual lipid species to adjust for the
effects of age and gender. Individual subject-level
standardized composite scores were determined for

each lipid class from this algorithm. These scores
were then used to assess the significance of each of
the lipid classes for differentiating AD and control
subjects. The results were summarized in terms of
the area under the receiver operating characteristic
curve (ROC AUC), covariates-adjusted significance
(p-value), and false discovery rate (q-value). Lipid
classes with q-value<0.05 were considered as statis-
tically significant.

To focus the analysis on lipid classes that track with
AD pathology, the lipid classes that were significantly
differentiated between AD and control subjects from
the above analyses (false discovery rate q < 0.05)
were then analyzed in subjects with MCI to assess
their ability to predict future conversion to AD. This
was first carried out within the framework of the LSA
algorithm described above on the stable MCI subjects
and MCI to AD converters using the residuals from
the ANCOVA model to adjust for age and gender
effect. Individual subject-level standardized compos-
ite scores were then derived for each lipid class from
this algorithm. An optimal cutoff on these standard-
ized scores of each lipid class was then derived via the
BATTing algorithm [26] to optimize their association
with the time to conversion of MCI subjects to AD.
Results of the association of these lipid classes with
time for MCI to AD progression were summarized in
terms of hazard ratio (HR) and median time to pro-
gression (MTP) from MCI to AD, with the covariates
adjusted significance (p-value) derived from log-rank
test.

RESULTS

Demographics

Data were obtained from 185 subjects with AD,
102 subjects with stable MCI, 196 subjects with MCI
that converted to AD, and 226 NL subjects. AD
and NL subjects were similar in age and differed in
body mass index and ADAD13 scores. AD subjects
had slightly lower body mass index (NL = 26.7 ± 4.3
[SD], AD = 25.5 ± 3.9 [SD], p < 0.05), as has been
previously described [27, 28], and as expected,
had a higher ADAS13 score (NL = 9.5 ± 4.2 [SD],
AD = 29.0 ± 7.7 [SD], p < 0.05). Among the MCI
subjects, when comparing those with stable MCI ver-
sus those that converted, there were no significant
differences in age, sex or BMI. Those that con-
verted to AD had a slightly higher baseline ADAS13
score (stable MCI = 14.8 ± 5.3 [SD], MCI-AD con-
verters = 20.8 ± 5.8 [SD], p < 0.05).
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Fig. 1. Box plots showing the median, first and third quartiles of the distributions of the four classes of lipids that significantly differentiated
normal controls (NL) and AD subjects. Shown are standardized values (centered by mean and divided by standard deviation), after adjusting
for age and gender as covariates. ∗q-value < 0.05 (Benjamini-Hochberg false discovery rate).

Lipids and lipid classes that differentiate AD
from NL

Serum levels of 349 lipids across 16 classes were
compared between AD and NL subjects. Because
of the varying numbers of different lipids in each
class, and to gain intuition about potential mech-
anism, lipids were grouped into chemical classes.
Area under the receiver operating characteristic curve
(ROC-AUC), p- and q-values were computed for
each of 13 classes (3 of the 16 classes had only one
entry) after adjusting for age and sex. Four classes of
lipids were found to significantly differ between AD
and NL subjects: cholesteroyl ester, PE, lyso-PE and
acylcarnitine with cholesteroyl ester and PE show-
ing decreases and lyso-PE and acylcarnitine showing
increases (Fig. 1).

Lipid classes that predict MCI to AD conversion

To focus our analyses on those markers that track
with AD pathology, we examined the capacity of
serum levels of the four lipid classes above that differ-
entiate AD and NL subjects (cholesteroyl ester, PE,
lyso-PE, and acylcarnitine) to predict time to con-
version from MCI to AD. Only two of these classes,
PE and lyso-PE were significantly associated with
time for MCI to AD conversion. The levels of these
lipid classes showed opposite directions of modula-
tion with low levels of PE (HR 0.62, p = 0.0034) and
high levels of lyso-PE (HR 1.34, p = 0.042; Fig. 2
and Table 4), resulting in greater speed of decline,
though both groups had similar asymptotic likeli-
hood of conversion. In both cases, the median time for
MCI subjects to convert to AD was two-fold faster,

Fig. 2. Kaplan-Meier curves for the two lipid classes (PE and lyso-PE) whose baseline serum levels both differentiated NL and AD subjects
and significantly predicted MCI to AD conversion.
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Table 3
Table of lipid classes and their performance in distinguishing NL from AD subjects. ROC AUC, receiver-operator characteristic area under

the curve

Lipid Classes Median Median ROC p q
(known) (NL) (AD) AUC (unadjusted) (FDR)

Cholesteroyl.ester 0.93 –0.24 0.59 0.0023 0.0247
Phosphatidylethanolamine 0.39 –0.96 0.57 0.0054 0.0247
Lysophosphatidylethanolamine –0.59 1.67 0.58 0.0057 0.0247
Acylcarnitine –0.66 –0.13 0.56 0.0117 0.0380
Phosphatidylinositol –0.6 0.4 0.57 0.0282 0.0663
Phosphatidylcholine 0.3 –0.5 0.55 0.0357 0.0663
Triacylglycerol –0.21 –1.18 0.55 0.0357 0.0663
Fatty.acid 0.58 –0.08 0.55 0.0747 0.1214
Ceramide –0.57 0.98 0.55 0.1235 0.1508
Lysophosphatidylcholine 0.12 –0.17 0.53 0.1246 0.1508
Sphingomyelin 0 0.1 0.47 0.1276 0.1508
Diacylglycerol 0.11 –0.56 0.54 0.1655 0.1793
Glucosylceramide –0.73 0.62 0.54 0.2653 0.2653

Table 4
Table of lipid classes that separate NL from AD with their optimal
cutoff and their performance in predicting conversion from MCI

to AD

Lipid Class Optimal Hazard p
Cutoff Ratio

Phosphatidylethanolamine 1.41 0.62 0.0034
Lysophosphatidy 1.35 1.34 0.042
lethanolamine
Cholesteroyl.ester –4.07 1.57 0.063
Acylcarnitine –3.55 1.63 0.0778

from 48 months to 24 months if the patient had a
positive biomarker (serum PE ≤ 1.41 or serum lyso-
PE ≥ 1.35).

DISCUSSION

In the current study, 349 serum biomarkers across
16 lipid classes were measured in a total of 709
subjects with no cognitive deficits, MCI, or AD. In
exploratory analyses, several classes of lipids differ-
entiated AD from NL subjects. Among these were
PE, which showed a significant decrease in AD sub-
jects and its hydrolytic metabolite, lyso-PE, which
was significantly increased, suggesting an increase in
PE turnover in AD subjects. These lipids were then
used to predict conversion from MCI to AD, and low
serum PE, as well as high serum levels of lyso-PE,
significantly enhanced the prediction of the rate of
MCI to AD conversion. These data suggest that serum
PE and lyso-PE levels may be useful adjuncts to more
traditional AD biomarkers for the prediction of MCI
to AD conversion.

Limitations in the study

The utility of PE or lyso-PE as biomarkers remain
unknown for several reasons. The data in this study
were obtained from an observational study and from
a single time point. It is not yet known if these lipids
will track the disease over time or whether incorpo-
rating PE or lyso-PE into clinical trial design can be
used to enrich MCI subject pools for those with more
rapid decline. Therefore, future studies would ben-
efit from serial sampling of PE and lyso-PE levels.
It is also not known if blood levels of PE and lyso-
PE reflect general neuronal dysfunction and would
also be elevated in other neurodegenerative diseases.
However a recent study did not find increases in PE
levels in patients with frontotemporal dementia com-
pared to controls [29]. The magnitudes of the effects
were relatively small, such that all ROC AUCs were
less than 0.6, as evident from the extensive overlap in
lipid levels between NL and AD subjects, as shown in
Fig. 1. However, because the metabolic pathways pro-
ducing PE and lyso-PE are likely independent from
those involving phosphorylation of tau, it is likely that
combining PE and lyso-PE with other serum markers,
such as p-tau 181 or 217 may provide more powerful
biomarkers to differentiate disease state and predict
MCI to AD conversion [7, 8].

Phosphatidylethanolamine, phospholipase A2,
and Alzheimer’s disease

Lipids make up a substantial percentage (up to
40%) of grey matter dry weight [30]. Given the degen-
eration seen in brain gray matter in AD, it is not
surprising that the lipid content of the AD and MCI
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brain is altered compared to normal subjects. For
example, it has consistently been found that PE lev-
els are lower in the AD brain and several studies also
showed an increase in PE metabolites [12–17, 31],
suggesting that AD is associated with an increase in
PE turnover. Our data similarly point to an increase
in PE turnover, with a decrease in serum PE and
increase in lyso-PE. Phospholipase A2 (PLA2) con-
verts PE to lyso-PE. This enzyme has been found to
be dysregulated in AD and its activity may be tied to
AD pathology. For example, PLA2 levels have been
found to be elevated [32] or decreased [33] in the AD
brain and PLA2 may be activated by amyloid beta
peptide [34], and products of PLA2, such as arachi-
donic acid, may exacerbate AD pathology [35]. In
addition, reduction in PLA2 may mitigate the effects
of AD pathology in a mouse model [36]. It is not yet
known if the latter finding is related to changes in
PE levels. In addition, given the increasing evidence
that inflammation plays a key role in the pathogen-
esis of AD [37–39], it is possible that the changes
in PE metabolism in the study may, in part, be due
to changes in the overall inflammatory state in AD
patients and in MCI patients that will convert to AD.

CONCLUSION

In the current study, we confirm previous findings
that brain and serum PE levels are depressed in AD
patients and report the new finding that low serum PE
and high serum lyso-PE levels predict time to conver-
sion from MCI to AD. These findings indicate that
the decrease in PE levels may be due to an increase
in PE turnover, given the increase in levels of its
metabolite, lyso-PE, in the serum. We speculate that
increased levels of PLA2, which has previously been
implicated in the inflammatory cascade that poten-
tiates AD pathology, may be responsible for these
changes in PE metabolism. Thus, we propose that
not only do PE and lyso-PE serve as potential new
biomarkers for the prediction of conversion from MCI
to AD, but also may provide novel insights about the
etiopathogenesis of AD.
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